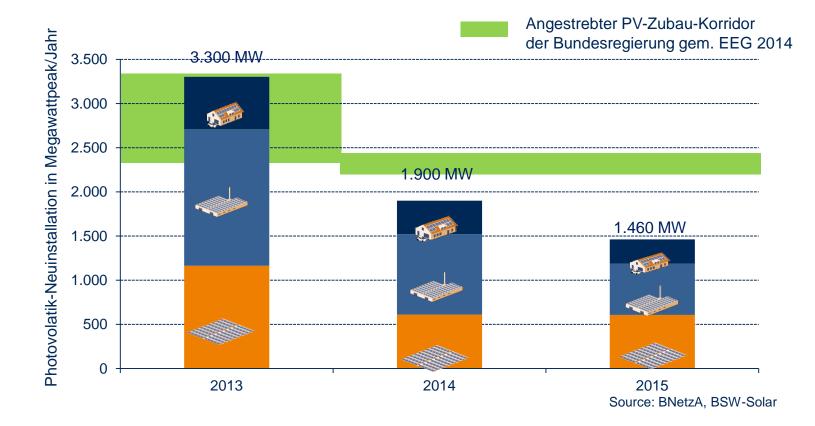


The neighbor solar supply model in Germany - "Mieterstrom"

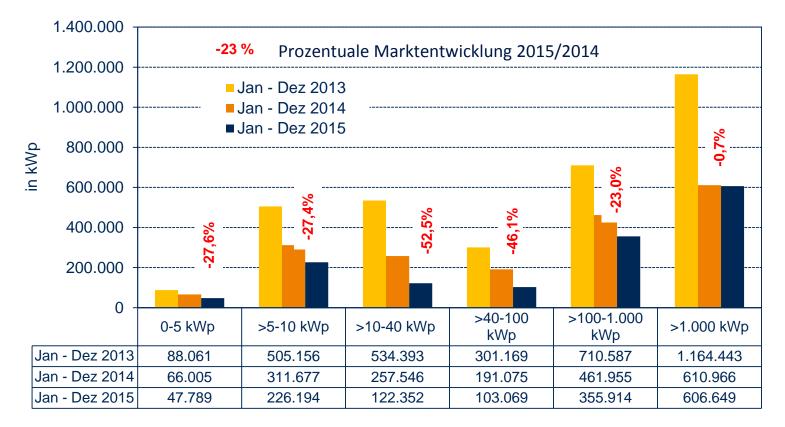
Luz Aguilar – BSW-Solar Brussels, 18th October 2016

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 646554

German Solar Association


- **TASK** To represent the solar industry in Germany in the thermal and photovoltaic and storage sector
- VISION A sustainable global energy supply provided by solar (renewable) energy
- **ACTIVITIES** Lobbying, political advice, public relations, market observation, standardization
- **EXPERIENCE** Active in the solar energy sector for over 30 years
- **REPRESENTS** More than 800 solar producers, suppliers, wholesalers, installers and other companies active in the solar business from all over the world

HEADQUARTERS Berlin



PV development in Germany

PV development in Germany

Source: BSW-Solar, BNetzA; Stand 1/2016

Definition of "Mieterstrom"

- The neighbor solar supply model is a decentralized / locally generated electricity from PV plants (and/or CHP), which is used directly by the tenants in multi-family houses or commercial buildings.
- The direct supply is allowed by the German Renewable Energy Act (EEG) fulfilling the following criteria:
 - Delivery to a third party (NO person identity)
 - Close proximity to the area
 - Without using the grid

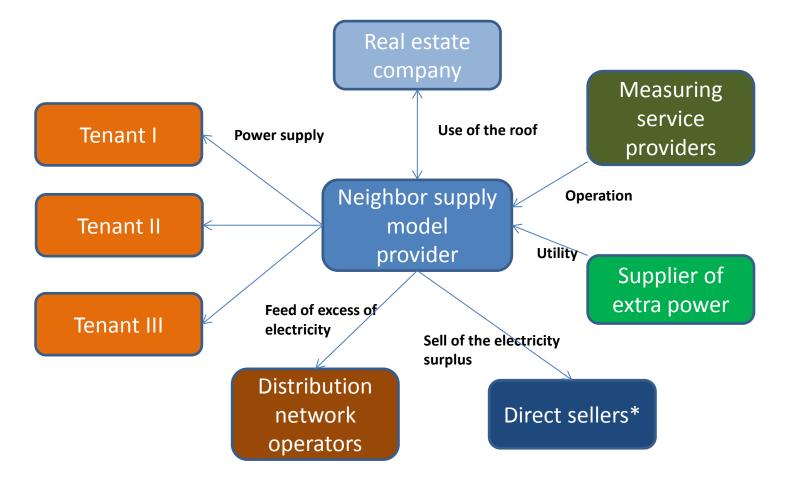
EEG surcharge & changes with the EEG amendment 2017

- Currently: payment of full EEG-surcharge 6.354 ct. /kWh
- EEG amendment 2017: the federal government is puthorized, through leg Council (Bu solar instal
 a) the sec
 - a) the sc

tial building;

- b) the electricity is delivered to a third party for its use within the building
- * A distinction can be made between different installation sizes or users

The neighbor supply model


www.pv-financing.eu

Actors & roles

Stages	Tasks	Possible players
Building envelope	Provision of the surfaces for PV	Real estate companies
	generation	
Electricity generation	Planning, installation, financing,	Utilities, service providers, real estate
	M&O of the PV installation	companies
Electricity delivery	Metering point operation, billing,	Utilities, cooperatives, real estate
	marketing and customer acquisition,	companies that are supported in this
	purchasing and delivery of grid	regard by various service providers,
	power, customer service	e.g. for measuring point operation
		and billing
Electricity	Close of a electricity contract,	Private or commercial final
consumption	electricity consumption	consumers (= tenants)

Contractual relationships of the players

Principal players

Real estate sector players:

- 1. The cooperative real estate
- 2. The municipal real estate
- 3. The commercial real estate
- 4. Homeowners' associations

Energy sector players:

- 1. Public utilities and energy supply companies
- 2. Green electricity providers
- 3. Energy cooperatives

Market potential

- Potential users of the neighbor supply model are:
 - Private tenants in multi-family houses
 - Real State Companies
 - Commercial tenants
 - Dormitories

- Number of multi-family houses: approximately 21 million apartments; About 3 to 4 million of these (up to 20 percent) are eligible for the supply model.*
- If the potential is fully exploited, consumption of approx. 3 TWh.
- Participating households can usually cover 25 to 35 percent of their own electricity requirements via the PV system.

Impact on the EEG surcharge

- Tenant electricity relieves EEG levy: ~5.7 Cent /kWh
 - Non-feeding of PV electricity avoids compensation payments
 - Positive effect despite reduced EEG levy on tenant electricity:
- Net effect: ~ 100 million euros relief (assuming 40% payment of the EEG surcharge)

POSSIBLE CHALLENGES

www.pv-financing.eu

Initial situation: Request for the model realization for several multi- **PVFINANCING** family houses

The crossing of the public street couldn't be realized for economic reasons

Source: SW Stuttgart, Dr. Jochen Link

PVFINANCING

In practice a customer installation is restricted to a single building or 100 **PVFINANCING** customers

The meters are located at opposite ends of the building, resulting in a division of the building

Through the installation of metering systems for each part of the building **PVFINANCING** it's no longer economically viable

Important assumptions for the implementation of the amendment

- The EEG surcharge for "Mieterstrom" and self-consumption should be equated to 40% from 2017 onwards
- Guaranteed price advantage against the normal supply rate
- The local consumption of the generated electricity should be at least 20% p.a. & Object
- Maximum size of the PV system can be limited to 100 kWp
- Neighborhood concepts should not be excluded
- The administrative processes (registration) should be easier

BEST PRACTICE EXAMPLE

www.pv-financing.eu

Energy cooperatives

Heidelberger Energiegenossenschaft eG:

First cooperatively organized provider

- 7 PV installations with total capacity of 445 kWp
- Supply with PV electricity to 119 tenants
- From the energy sector the housing cooperative was supported by service providers like Bürgerwerken, Naturstrom, and Discovergy.

Thank you for your attention

Luz Alicia Aguilar International Project Manager German Solar Association

aguilar@bsw-solar.de