

PV Financing webinar: Business models for the next generation of solar PV deployment in the EU

#PVbizmodels @PVFinancing

PV Financing EU-wide webinar, Monday 6 February 2016 SolarPower Europe

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 646554

Intro Sonia Dunlop, Policy Adviser, SolarPower Europe

PHOTOVOLTAIC AUSTRIA FEDERAL ASSOCIATION

PVFINANCING

German Excellence. Global Relevance.

15:05 Power Purchase Agreements in the UK and elsewhere, Elizabeth Reid, Partner, Bird&Bird LLP

Q&A

15:20 The *Mieterstrom* neighbour solar supply model in Germany, Fabian Zuber,

L°energy

Q&A

15:35 The collective self-consumption model in France, Julien Courtel, Project Manager, Observ'ER

Q&A

15:50 Next steps, Sonia Dunlop, Policy Adviser, SolarPower Europe

A recording of the webinar will be available after the broadcast.

Send us your questions!

With GoToWebinar (preferred):

Use questions box on right hand side of your screen

Get involved via Twitter:

#PVbizmodels @PVFinancing @SolarPowerEU @twobirdsenergy @soniakdunlop @EURObserv_ER

Power Purchase Agreements in the UK and elsewhere

Elizabeth Reid, Partner, Bird&Bird LLP

Power Purchase Agreements in the UK and elsewhere & Bird & Bird

Elizabeth Reid Partner, UK

6 February 2017

Traditional PPA Models

PPA structure (Wholesale PPA)

PPA Structure (Offsite sleeved PPA)

PPA Structure (Onsite private wire)

Comparison of traditional PPA structures

Business	Revenues	Сарех	Орех	Cost of capital	Scale	Profitability
model Wholesale PPA	Low: Wholesale market price	Low due to lack of geographical constraints. Historically high due to policy-led "rushes"	Can be high due to access issues with landowner	Dependant on wholesale electricity projections and how volatile or accurate these are.	Plenty of scale possible as all that is need is land, grid and an off-taker.	Was profitable with ROCs and high price forecasts, now not profitable
Offsite sleeved PPA	Medium: competing with retail prices, but including grid costs	Same as above, although transactional costs high due to complicated legal structure	Same as above	Dependant on credit-worthiness of corporate consumer, which has proven challenging	Similar to above, but transactional costs quite high, so not suited to smaller projects.	Was profitable with ROCs, now may not be profitable
Onsite private wire	High: competing with commercial retail prices, avoiding grid costs	Potential reductions through e.g. grid efficiencies, but potential challenges from geographical constraints.	Same as above, although rental costs and access may differ on consumer- owned sites	Dependant on credit-worthiness of corporate consumer, which has proven challenging. Additional challenges from "stranded asset" risk	Limited market size, as challenging set of requirements.	In theory profitable, but challenges remain making projects viable.

Innovative PPA Models

PPA Structure (Mini Utility)

PPA Structure (Synthetic PPA)

Thank you!

Elizabeth Reid

Partner, Bird & Bird elizabeth.reid@twobirds.com (00 44 20) 7905 6226

Elizabeth Reid, Partner, Bird&Bird LLP

The *Mieterstrom* neighbour solar supply model in Germany Fabian Zuber, L°energy

lenergy

"Mieterstrom"

Fabian Zuber | l°energy 6th Februar 2017

The neighbour solar supply model in Germany

Foto: Stephan Franz

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 646554

About l°energy | local energy markets

l°energy

- l°energy is a Berlin based consulting company.
- We offer Market Analysis and Business Development for local energy markets.
- Fabian Zuber is founder of l°energy and has over 12 years experience in the renewable energy market.

Fabian Zuber | l°energy | "Mieterstrom" | 6th Februar 2017

l°energy

Local energy markets gain importance

Neighbour solar supply - Definition of "Mieterstrom"

- Neighbour solar supply is based on locally generated electricity from PV plants and/or combined heat and power (CHP).
- Electricity is used directly by the tenants in multi-family houses or commercial buildings.
- 3. Mieterstrom-products are usually a mix of direct supply and grid supply.
- 4. A building can have participating and non-participating tenants.

Mieterstrom: The neighbour solar supply model in Germany:

Source: Mieterstrom-Leitfaden 2016, BSW

Comparison of business models

BUSINESS MODELS	ON-SITE CONSUMPTION AND LEASE MODEL	NEIGHBOUR SOLAR SUPPLY	REGIONAL ELECTRICITY, BOROUGH ELECTRICITY AND NEIGHBOURHOOD ELECTRICITY
Supply relationship	The plant operator and final power consumer must be the same entity.	Supply to third parties	Supply to third parties
	Note: This is established through the lease contract or sale of the PV installation to the power consumer.		
Grid use and grid charges	No use of the public grid. Consequently, no grid charges are due.	No use of the public grid. Consequently, no grid charges are due.	Use of the public grid. Grid charges are due.
EEG levy (tax)	Up to 40% of the EEG levy is due. For small installations the "small installation regulation" applies where electricity from installations with a maximum capacity of 10kWp up to an on site consumption of 10 MWh/year, is 100% exempt from the EEG levy.	100% of the EEG levy is due, although this is due to change shortly (with the EEG amendment 2017) and the installation will be power will be exempted from a percentage of the levy.	100% of the EEG levy is due.
EEG remuneration or feed-in tariff	For the self-consumed quantity of electricity, in accordance with EEG, no remuneration is paid.	For the directly-consumed quantity of electricity, in accordance with EEG feed-in tariff, no remuneration is paid.	The quantity of electricity fed into the grid will be remunerated at the valid EEG feed-in tariff rate for 20 years.

Specifics of Mieterstrom:

- Delivery to a third party (no person identity)
- No use of the grid
- No grid charges
- 100 % EEG levy (6.35
 €Ct/kWh)
- No EEG-feed-in-tariff is paid for directly used electricity

Source: EU-WIDE SOLAR PV BUSINESS MODELS 2016, PV FINANCING project | November 2016

Political Framework: Support to come?

- 1. Providers of the neighbour solar supply model deliver electricity to final consumers and must therefore satisfy the **requirements of a licensed supplier** as stipulated in the Energy Industry Law (EnWG).
- 2. Political framework is unclear and inconsistent.
- 3. Specific support programs at regional level have been implemented in several states in 2016 / 2017.
- 4. Amendment of the **Renewable Energy Law (EEG 2017**): The federal government is authorized, through legislative decree to reduce the EEG surcharge that operators of solar installations must currently pay (only for PV on residential buildings).
- 5. Newest proposal by the government is to skip decree and implement a "Mieterstrom"-law instead that would implement a tariff for directly used electricity.
- 6. Negotiations between the Ministry of Economics and Energy and the Parliament is going on: Outcome unclear.

Market potentials Boost for urban energy transition?

- 1. New market: Business models are being developed only since 2013 rapidly growing interest since 2016.
- 2. Several hundred projects have been realized or are being planned (PV based projects are less common than CPH).
- 3. About 3 million apartments /tenants are eligible for the supply model.
- Maximum potential of "Mieterstrom" could lead to approx. 3-4 TWh of direct PV electricity use.

Sources: HEG, Mieterstrom-Leitfaden 2016, BSW, Prognos & BH&W, Mieterstrom, 2017

Broad variety of players in the market

About 30-40 first movers are active - many new players are entering the market segment

Real estate sector players:

- 1. The cooperative real estate
- 2. The municipal real estate
- 3. The commercial real estate
- 4. Homeowners' associations

Energy sector players:

- 1. Public utilities
- 2. Energy supply companies
- 3. Green electricity providers
- 4. Energy cooperatives

Mieterstrom Business Case

- 1. Economic profitability under given circumstances is only given in best case scenarios.
- Direct use of PV electricity usually covers about 50-75% of total production. The rest is fed into the grid.
- Participating households can usually cover 25 to 35 percent of their own electricity requirements via the PV.
- 4. Many factors have to be taken into consideration (e.g. participating tenants, size of PV system, location).

Thank you | For more information

lenergy

Fabian Zuber, L°energy

The collective self-consumption model in France

Julien Courtel, Project Manager, Observ'ER

Collective selfconsumption in France Julien Courtel, Observ'ER

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 646554

Brief history of self-consumption in France

<section-header>

« Self-consumption is collective when the electricity supply is taking place between one or more electricity producers and one or more end consumers, linked together by a legal entity ...» (beginning of Art. L 315-2, Energy Code).

- Producers and consumers <u>HAVE TO</u> be part of a same legal entity.
- > The choice of the type of entity is free (company, cooperative, association...)
- The entity in charge of the whole operation:
 - It manages the relationship between consumers and producers
 - > It informs the grid operator about the breakdown of consumed electricity among consumers

REX will be key to overcome uncertainties

"The grid operators have to implement technical and contractual process in order to facilitate self-consumption operations" (end of Art. L 315-6, Energy Code).

This is a limitation to some reluctance that may have been observed locally on the part of grid operators

"...and from which the injection and exit points are on the same low-voltage loop of the public distribution grid." (end of Art. L 315-2, Energy Code).

Geographic coherence and a preservation of suppliers' interests

"...the electricity <u>supply</u> ... "(end of Art. L 315-2, Energy Code).

If the electricity producer is a "supplier" he will have to comply with many obligations

New ordinance: private grids (16 December 2016)

« A private grid is a distribution network that brings electricity inside a closed site and which supplies one or more non-residential consumers... » (Art 344-1, Energy Code)

A good opportunity for project developers interested in collective self-consumption but were limited by the low-voltage loop

«The private grid operator has to facilitate the use of renewable energies on his grid» (Art 344-5, Energy Code)

2 conditions to be allowed to create a private grid (alternative)

This grid is created for specific « technical or security reasons ».

Companies have to be linked (subsidiary companies). These new rules create new relationships that need a contractual framework.

Thank you for your attention

Julien Courtel

julien.courtel@energies-renouvelables.org

Observ'ER

146, rue de l'Université,

75007 PARIS

France

Julien Courtel, Project Manager, Observ'ER

More information and next steps

Sonia Dunlop, Policy Adviser, SolarPower Europe

Index: national documents

PVFINANCING

AUSTRIA

Roof rental contract Dachvermietung (Österreich)

Leasing contract Pachtvertrag (Österreich)

Solar cooperative association by-laws Vereinstatuten (Österreich)

Self-consumption model guidelines Leitfaden zu PV-Eigenverbrauchsmodellen

Policy advisory paper Austria Nationales Positionspapier

FRANCE

Collective self-consumption contract <u>Modèle d'autoconsommation collective d'électricité (France)</u> Surplus electricity in collective self consumption electricity contract <u>Modèle de contrat de vente du surplus</u> <u>d'électricité dans le cadre d'une autoconsommation collective (France)</u>

Solar business model implementation guidelines Guide de Mise en Oeuvre de Projets PV en France

Policy advisory paper France <u>Reccommendations pour un deployment accru du photvoltaique en France</u> **GERMANY**

Neighbour electricity model implementation guidelines <u>"Geschäftsmodelle Mit Pv-Mieterstrom"</u> Policy advisory paper Germany <u>Nationales Positionspapier</u>

ITALY

Operational leasing contract for a PV plant <u>Contratto di locazione operativa di impianto fotovoltaico (italia)</u> Power Purchase Agreement contract for electricity supply through a PV plant <u>Accordo per la costruzione di impianto dedicato e somministrazione di energia elettrica secondo lo schema del sistema efficiente di utenza (italia)</u>

Solar business model implementation guidelines <u>Impianti fotovoltaici: linee guida per l'implementazione</u> Policy advisory paper Italy <u>Fotovoltaico in Italia, quale politiche di supporto?</u>

Index (contd)

PVFINANCING

SPAIN

Contract template for the participation in the crowdfunding of a PV installation <u>Contrato de cuentas en</u> participación para la explotación de una instalación fotovoltaica ubicada en (España)

Contract template for representation in the electricity trading market for a prosumer with self-consumption 2 <u>Contrato de representación de mercado para la venta de excedentes de una instalación del autoconsumo</u> (España)

Cooperative by-laws template Plantilla de estatutos corporativa (España)

Solar business model implementation guidelines Pautas de Implementación Nacional

National report on regulatory framework Spain Informe nacional de asesoramiento regulatorio

TURKEY

Contract for lease of PV system FV sistemlerin kiralanması için Örnek Kontrat

<u>Electricity utility, investor and solar supplier contract Kontrat tipi 1: Kamu Hizmetleri(Elektrik), yatırımcı ve solar</u> <u>tedarikçi model I (Türkiye)</u>

<u>Electricity supply contract for solar PV electricity supply and example electricity bill Fotovoltaik Elektrik Arzı ve</u> <u>Örnek Elektrik faturası için Örnek Elektrik Arzı Sözleşmesi (Türkiye)</u>

Solar business model implementation guidelines Ulusal uygulama rehberi

Policy advisory paper Turkey Ulusal Politika Tavsiye Belgesi

UNITED KINGDOM

Power Purchase Agreement (United Kingdom)

Making Solar Pay: the future of the solar PPA market in the UK

UK National Policy Advisory Paper

EU-level PV Financing reports

European Union

PVFINANCING

EU-WIDE SOLAR PV BUSINESS MODELS

GUIDELINES FOR IMPLEMENTATION

A guide for investors and developers on how to put into place and finance the top business models for solar PV across the EU.

PV FINANCING project | November 2016 Deliverable 4.4 – Public – EU Implementation Guidelines

Sonia Dunlop - Alexandre Roesch

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 646554

PVFINANCING

0

0.3771 0.3960 0.4158

0.3960

II I I

+ 100% -

Cash flow models

Forthcoming events and webinars **PVFINANCING**

- National webinars (in national languages) for seven countries: Austria, Germany, France, Italy, Spain, Turkey and United Kingdom
 - Contact the <u>national partners</u> for more information.
 - Italy webinar on Mon 20 February 15:00-16:30.
- Event in Brussels to present results to policymakers in April-May 2017
 - Contact <u>SolarPower Europe</u> for more information.
- Possible national webinars in other EU Member States to disseminate project results
 - Check <u>@PVFinancing on Twitter</u> for more information.

Thank you for joining our webinar

Sonia Dunlop Policy Adviser, SolarPower Europe Email: <u>s.dunlop@solarpowereurope.org</u> Phone: +32 (0)2 709 55 28